Publications


Publications RhEoVOLUTION

Kerswell, B., Cerpa, N., Tommasi, A., Godard, M., Padron-Navarta, J.A. RocMLMs: Predicting Rock Properties through Machine Learning Models, Journal of Geophysical Research – Machine Learning and Computation, in press.Preprint at https://essopenarchive.org/users/767265/articles/825939-rocmlms-predicting-rock-properties-through-machine-learning-models


Boissonneau, G., Tommasi, A., Barou, F., Lopez-Sanchez M.A., Montagnat, M. Dynamic recrystallization and mechanical behavior of Mg alloy AZ31: Constraints from tensile tests with in-situ EBSD analysis. Comptes Rendus Mécanique, submitted. Preprint at HAL https://hal.science/hal-04388880


Chardelin, M., Tommasi, A., Padron-Navarta, J.A. Progressive strain localization and fluid-focusing in mantle shear zones during rifting: Petrostructural constraints from the Zabargad peridotites, Red Sea. J. Petrology, in press. Preprint at HAL https://hal.science/hal-04387529


Chauve, T., Montagnat, M., Dansereau, V. Saramito, P., Fourteau, K., Tommasi, A. (2024) A physically-based formulation for texture evolution during dynamic recrystallization. A case study for ice. Comptes rendus Mécanique, Volume 352 (2024), pp. 99-134. doi: 10.5802/crmeca.243. Preprint at HAL https://hal.science/hal-04231338

 

Lopez-Sanchez M.A., Chauve, T., Montagnat, M., Tommasi, A. (2023) Decoupling between strain localisation and the microstructural record revealed by in-situ strain measurements in polycrystalline ice. Earth Planetary Science Letters, 611: 118149. https://doi.org/10.1016/j.epsl.2023.118149. Reprint at Eartharxiv https://doi.org/10.31223/X5291H

More in video : Evolution of strain field and microstructure in polycrystalline ice using in situ experiments


Lopez-Sanchez M.A., Tommasi, A., Ben Ismail, W., Barou. F. (2021) Dynamic recrystallization by subgrain rotation in olivine revealed by high-spatial resolution electron backscatter diffraction. Tectonophysics, doi: 10.1016/j.tecto.2021.228916; open access (author reprint) @ HAL

More in video : Dynamic recrystallization by subgrain rotation in olivine revealed by EBSD


Ben Ismail, W., Tommasi, A., Lopez-Sanchez M.A., Rutter, E.W., Barou. F. (2021) Deformation of upper mantle rocks with contrasting initial fabrics in axial extension. Tectonophysics, doi:10.1016/j.tecto.2021.228997;  open access (author reprint) @ ArXiv


Manceaux, Renan (2022) The aim of this study was to use data from columnar ice creep test in order to train a machine learning algorithm to predict nucleation site. Various type of ML algorithms were tested but none has shown to to provide reliable predictions with the available data.
UGA and IGE internship, M1 Statistics and Data Sciences. https://mecaiceige.gricad-pages.univ-grenoble-alpes.fr/internship/stage_renan_manceaux_2022/main.html


Neves, S.P., Tommasi, A., Vauchez, A., Carrino, T.A. (2021) The Borborema strike-slip shear zone system (NE Brazil): Large-scale intracontinental strain localization in a heterogeneous plate. Lithosphere, 2021(6): 6407232. https://doi.org/10.2113/2021/6407232

 


Related publications by the RhEoVOLUTION team


2015 – Signorelli, J & Tommasi, A. Modeling the effect of subgrain rotation recrystallization on the evolution of olivine crystal preferred orientations in simple shear. Earth Planet. Sci. Lett., 430: 356-366, doi: 10.1016/j.epsl.2015.08.018

2015 – Montagnat M., Chauve, T., Barou, F., Tommasi, A, Beausir, B., Fressengeas, C. Analysis of dynamic recrystallization of ice from EBSD orientation mapping. Frontiers in Earth Sciences, 3, art. 81, pp.1-13, doi: 10.3389/feart.2015.00081

2017 – Hidas, K., Tommasi, A., Barou, F., Mainprice, D., Chauve, T., Montagnat, M. Microstructural evolution during annealing of ice Ih using Electron Backscatter Diffraction mapping. J. Struct. Geol., 99: 31-44. https://doi.org/10.1016/j.jsg.2017.05.001

2017 – Chauve, T., Montagnat M., Barou, F., Hidas K., Tommasi, A, Mainprice D. Investigation of nucleation processes during dynamic recrystallization in ice using cryo-EBSD. Phil Trans A 375 : 20150345. Special issue Microdynamics of Ice, doi: 0.1098/rsta.2015.0345

2017 – Chauve, T., Montagnat M., Piazolo, S., Journaux, B., Wheeler, J., Barou, F., Mainprice D., Tommasi, A. Non-basal dislocations should be accounted for to simulate ice mass flow. Earth Planet. Sci. Lett., doi: 10.1016/j.epsl.2017.06.020

2019 – Mameri, L, Tommasi, A., Signorelli, J., Hansen, L. Predicting viscoplastic anisotropy in the upper mantle: a comparison between experiments and polycrystal plasticity models. Phys. Earth Planet. Int. 286: 69-80, doi: 10.1016/j.pepi.2018.11.002

2019 – Journaux, B., Chauve, T., Montagnat, M., Tommasi, A., Barou, F, Mainprice, D., Gest, L., Recrystallization processes, microstructure and texture evolution in polycrystalline ice during high temperature simple shear, The Cryosphere, 13, 1495-1511, doi: 10.5194/tc-13-1495-2019

2020 – Lopez-Sanchez M.A., Tommasi, A., Barou. F., Quey, R. Dislocation-driven recrystallization in AZ31B magnesium alloy imaged by quasi-in-situ EBSD in annealing experiments. Materials Characterization, 165: 110382, doi: 10.1016/j.matchar.2020.110382

2021 – Mameri, L., Tommasi, A.; Signorelli, J., Hassani, R. Modelling olivine-induced viscous anisotropy in fossil mantle strike-slip shear zones and the resulting strain localization in the crust. Geophys. J. Intern.,224 : 608-625, doi: 10.1093/gji/ggaa400

2021 – Signorelli, J., Hassani, R., Tommasi, A., Mameri, L. An effective parameterization of texture-induced viscous anisotropy in orthotropic materials with application for modeling geodynamical flows. Journal of Theoretical, Computational and Applied Mechanics, doi: 10.46298/jtcam.6737, Arxiv 2008.11494v3

2021 – Mameri, L., Tommasi, A.; Signorelli, J., Hassani, R. Structural inheritance controlled by olivine anisotropy in fossil mantle shear zones with different past kinematics. Tectonophysics, 863, 229982, doi: 10.1016/j.tecto.2023.229982

2023 – Demouchy, S., Wang, Q., Tommasi, A. Deforming the upper mantle: Olivine mechanical properties and anisotropy. Elements Magazine, 19(3): 151-157. DOI: 10.2138/gselements.19.3.151